Respuesta :
hello :
0=2x2+3x-8
2x²+3x-8 = 0...... a =2 b =3 c = -8
the discriminant : b² - 4ac = (3)²-4(2)(-8)=9+72=81=9²
the positive solution is : x = (-b + √(b²-4ac))/2a
x = (-3+9)/4 = 6/4 = 3/2
0=2x2+3x-8
2x²+3x-8 = 0...... a =2 b =3 c = -8
the discriminant : b² - 4ac = (3)²-4(2)(-8)=9+72=81=9²
the positive solution is : x = (-b + √(b²-4ac))/2a
x = (-3+9)/4 = 6/4 = 3/2
For this case we have the following polynomial:
[tex] 0=2x^2+3x-8 [/tex]
Using the quadratic formula we have:
[tex] x = \frac{-b+/-\sqrt{b^2 - 4ac}}{2a} [/tex]
Then, replacing values we have:
[tex] x = \frac{-3+/-\sqrt{3^2 - 4(2)(-8)}}{2(2)} [/tex]
Rewriting the expression we have:
[tex] x = \frac{-3+/-\sqrt{9+64}}{4} [/tex]
[tex] x = \frac{-3+/-\sqrt{73}}{4} [/tex]
Discarding the negative root we have:
[tex] x = \frac{-3+\sqrt{73}}{4} [/tex]
Then, doing the calculations:
[tex] x = 1.39
[/tex]
Answer:
the positive solution to the quadratic equation is:
[tex] x = 1.39 [/tex]