Takoda1
contestada

rounded to the nearest hundredth, what is the positive solution to the quadratic equation 0=2x2+3x-8 quadratic formula x=-b+/-(sqrt)b2-4ac (fraction) 2a

Respuesta :

hello :
0=2x2+3x-8
2x²+3x-8 = 0......  a =2   b =3   c = -8
the discriminant : b² - 4ac  = (3)²-4(2)(-8)=9+72=81=9²
the positive solution  is : x = (-b + √(b²-4ac))/2a 
x = (-3+9)/4 = 6/4 = 3/2

For this case we have the following polynomial:

[tex] 0=2x^2+3x-8 [/tex]

Using the quadratic formula we have:

[tex] x = \frac{-b+/-\sqrt{b^2 - 4ac}}{2a} [/tex]

Then, replacing values we have:

[tex] x = \frac{-3+/-\sqrt{3^2 - 4(2)(-8)}}{2(2)} [/tex]

Rewriting the expression we have:

[tex] x = \frac{-3+/-\sqrt{9+64}}{4} [/tex]

[tex] x = \frac{-3+/-\sqrt{73}}{4} [/tex]

Discarding the negative root we have:

[tex] x = \frac{-3+\sqrt{73}}{4} [/tex]

Then, doing the calculations:

[tex] x = 1.39
[/tex]

Answer:

the positive solution to the quadratic equation is:

[tex] x = 1.39 [/tex]