Respuesta :

Answer: Choice A

Set the radicand (stuff under the radical) greater than or equal to 0. Solve x+11 >= 0 for x to get x >= -11

we proceed to resolve each case to determine the solution

we know that

The radicand is a number or quantity from which a root is to be extracted

In this problem the radicand must be greater than or equal to zero

case A [tex]y=\sqrt{x+11} +5[/tex]

the radicand is equal to

[tex](x+11)[/tex]

so

[tex](x+11) \geq 0\\x \geq -11[/tex]

the domain is the interval--------> [-11.∞)

therefore

the function  [tex]y=\sqrt{x+11} +5[/tex] is the solution of the problem

case B [tex]y=\sqrt{x-11} +5[/tex]

the radicand is equal to

[tex](x-11)[/tex]

so

[tex](x-11) \geq 0\\x \geq 11[/tex]

the domain is the interval--------> [11.∞)

therefore

the function  [tex]y=\sqrt{x-11} +5[/tex] is not the solution of the problem

case C [tex]y=\sqrt{x+5}-11[/tex]

the radicand is equal to

[tex](x+5)[/tex]

so

[tex](x+5) \geq 0\\x \geq -5[/tex]

the domain is the interval--------> [-5.∞)

therefore

the function  [tex]y=\sqrt{x+5} -11[/tex] is not the solution of the problem

case D [tex]y=\sqrt{x+5}+11[/tex]

the radicand is equal to

[tex](x+5)[/tex]

so

[tex](x+5) \geq 0\\x \geq -5[/tex]

the domain is the interval--------> [-5.∞)

therefore

the function  [tex]y=\sqrt{x+5}+11[/tex] is not the solution of the problem

the answer is the function [tex]y=\sqrt{x+11} +5[/tex]