contestada

The table shows a company’s profit based on the number of pounds of food produced.

Using the quadratic regression model, which is the best estimate of the profit when 350 pounds of food are produced?


A). 5,150
B). 5,300
C). 10,150
D). 11,000

The table shows a companys profit based on the number of pounds of food producedUsing the quadratic regression model which is the best estimate of the profit wh class=

Respuesta :

The answer is B 5,300

Answer:

B) 5,300

Step-by-step explanation:

Let x represents the pounds of food produced and y represents the profit in dollars,

Thus, the table that shows the given situation would be,

x    100          250       500         650         800

y   -11000     0          10300      11500      9075  

Since, the equation of a quadratic equation is,

[tex]y=A+Bx+Cx^2[/tex]  

Where,

[tex]A=\overline{y}-B\overline{x}-C(\overline{x})^2[/tex]

[tex]B=\frac{S_{xy} S_{x^2x^2}-S_{x^2y}S_{xx^2}}{S_{xx}.S_{x^2x^2}-(S_{xx^2})^2}[/tex]

[tex]C=\frac{S_{x^2y}.S_{xx}-S_{xy}S_{xx^2}}{S_{xx}S_{x^2x^2}-(S_{xx})^2}[/tex]

Also,

[tex]S_{xx}=\frac{\sum(x_i-\bar{x})^2}{n}[/tex]

[tex]S{xy}=\frac{(x_i-\bar{x})(y_i-\bar{y})}{n}[/tex]

[tex]S_{xx^2}=\frac{\sum(x_i-\bra{x})(x_i^2-\bar{x^2})}{n}[/tex]

[tex]S_{x^2x^2}=\frac{\sum(x_i-\bar{x^2})^2}{n}[/tex]

[tex]S_{x^2y}=\frac{\sum (x_i^2-\bar{x^2})(y_i-\bar{y})}{n}[/tex]

By substituting the values,

We get,

A ≈ -20420.96

B ≈ 102.24

C ≈ -0.082

Hence, the quadratic equation that shows the given situation is,

[tex]y=-20420.96+102.24x-0.082x^2[/tex]

For x = 350 pounds,

[tex]y=-20420.96+102.24(350)-0.082(350)^2[/tex]

[tex]=5318.04[/tex]

Which is nearby 5300,

Hence, option B is correct.