Respuesta :
Writing the circumference of circle X and circle Y in ratio
[tex]C_{Y}: C_{X} [/tex]
[tex]12 \pi :6 \pi [/tex]
[tex]2:1[/tex]
Circumference of Y is twice of circumference of X, hence the radius of circle Y is twice of circle X
Correct answer: option 1)
[tex]C_{Y}: C_{X} [/tex]
[tex]12 \pi :6 \pi [/tex]
[tex]2:1[/tex]
Circumference of Y is twice of circumference of X, hence the radius of circle Y is twice of circle X
Correct answer: option 1)
Answer:
Correct choice is 4)
Step-by-step explanation:
Circle X has radius [tex]r_X = 6[/tex] units and circumference [tex]C_X=12\pi[/tex] units.
Circle Y has radius [tex]r_Y[/tex] units and circumference [tex]C_Y = 6[/tex] units.
Then
[tex]r_X\ -\ C_X,\\ \\r_Y\ -\ C_Y.[/tex]
Mathematically, you can write a proportion:
[tex]\dfrac{r_X}{r_Y}=\dfrac{C_X}{C_Y},\\ \\\dfrac{6}{r_Y}=\dfrac{12\pi}{6},\\ \\r_Y=\dfrac{6\cdot 6}{12\pi}=\dfrac{3}{\pi}\ units.[/tex]