T1r1a
contestada

The length and width of a rectangular patio are, (x + 8) feet and (x + 6) feet, respectively. If the area of the patio is 160 square feet, what are the dimensions of the patio?

can I have the work too?

Respuesta :

Answer:

Area of the rectangle(A) is given by:

[tex]A=lw[/tex]

where,

l is the length and w is the width of the rectangle.

As per the statement:

The length and width of a rectangular patio are, (x + 8) feet and (x + 6) feet, respectively. If the area of the patio is 160 square feet

⇒A = 160 square feet, l= x+8 feet and w = x+6 feet

then;

[tex](x+8)(x+6) = 160[/tex]

⇒[tex]x^2+6x+8x+48 = 160[/tex]

⇒[tex]x^2+14x+48 = 160[/tex]

Subtract 48 from both sides we have;

[tex]x^2+14x=112[/tex]

Using completing square method:

[tex]x^2+14x+7^2=112+7^2[/tex]

⇒[tex](x+7)^2=112+49[/tex]

⇒[tex](x+7)^2=161[/tex]

Simplify:

[tex]x+7 = \pm \sqrt{161}[/tex]

Subtract 7 from both sides we have;

[tex]x = -7 \pm \sqrt{161}[/tex]

Since, the sides cannot be in negative;

⇒[tex]x = -7+\sqrt{161}[/tex]

Length of patio = [tex]x+8 = -7+\sqrt{161}+8 = 1+\sqrt{161}[/tex] feet

Width of patio = [tex]x+6 = -7+\sqrt{161}+6 = -1+\sqrt{161}[/tex] feet

Therefore, the dimensions of the patio are:

[tex]1+\sqrt{161}[/tex] feet and [tex]-1+\sqrt{161}[/tex] feet