Respuesta :
Using the information from the question, one can construct two equations:
[tex]4 z = x[/tex] ... (1)
[tex] \frac{1}{z} + \frac{1}{x} [/tex] ... (2)
by substituting (1) into (2) to find x
[tex] \frac{1}{z} + \frac{1}{4z} = \frac{1}{4} [/tex]
[tex]\frac{5}{4z} = \frac{1}{4} [/tex]
\frac{5}{4z} = \frac{1}{4}
[tex]\frac{4z}{5} = \frac{4}{1} [/tex]
[tex]\frac{4z}{1} = \frac{20}{1} [/tex]
[tex]z = \frac{20}{4} [/tex]
⇒ z = 5
By substituting value of z into (1)
⇒ 4 (5) = x
⇒ x = 20
Thus the two numbers are 5 & 20
[tex]4 z = x[/tex] ... (1)
[tex] \frac{1}{z} + \frac{1}{x} [/tex] ... (2)
by substituting (1) into (2) to find x
[tex] \frac{1}{z} + \frac{1}{4z} = \frac{1}{4} [/tex]
[tex]\frac{5}{4z} = \frac{1}{4} [/tex]
\frac{5}{4z} = \frac{1}{4}
[tex]\frac{4z}{5} = \frac{4}{1} [/tex]
[tex]\frac{4z}{1} = \frac{20}{1} [/tex]
[tex]z = \frac{20}{4} [/tex]
⇒ z = 5
By substituting value of z into (1)
⇒ 4 (5) = x
⇒ x = 20
Thus the two numbers are 5 & 20
Answer:
The required numbers are 5 and 20.
Step-by-step explanation:
Given : One number is four times another number.
Let the first number is 'x'
The reciprocal of the first number is [tex]\frac{1}{x}[/tex]
and another number is '4x'
The reciprocal of the another number is [tex]\frac{1}{4x}[/tex]
The sum of their reciprocals is [tex]\frac{1}{4}[/tex]
i.e. [tex]\frac{1}{x}+\frac{1}{4x}=\frac{1}{4}[/tex]
Solving the equation,
[tex]\frac{4+1}{4x}=\frac{1}{4}[/tex]
[tex]\frac{5}{4x}=\frac{1}{4}[/tex]
Cross multiply,
[tex]5\times 4=1\times 4x[/tex]
[tex]20=4x[/tex]
[tex]x=\frac{20}{4}[/tex]
[tex]x=5[/tex]
Another number is [tex]4x=5\times 4=20[/tex]
Therefore, the required numbers are 5 and 20.