Respuesta :

[tex]Center(-1;4),[/tex]  [tex]radius=\sqrt{3}[/tex]

[tex](x+1)^2+(y-4)^2=(\sqrt{3})^2[/tex]
[tex]x^2+2x+1+y^2-8y+16=3[/tex]
[tex]x^2+y^2+2x-8y+14=0[/tex]

:)

 Answer:

The equation of circle with Center (-1, 4), radius = √3 is [tex](x+1)^2+(y-4)^2=3[/tex]

Step-by-step explanation:

Given : Center (-1, 4), radius = √3

We have to find the equation of circle with Center (-1, 4), radius = √3.

The standard equation of circle with center (h,k) and radius r is given by

[tex](x-h)^2+(y-k)^2=r^2[/tex],

Given Center (-1, 4), radius = √3

Subsitute, h = -1 , k = 4 and r = √3

We have,

[tex](x-(-1))^2+(y-4)^2=(\sqrt{3})^2[/tex]

Simplify, we have,

[tex](x+1)^2+(y-4)^2=3[/tex]

Thus, The equation of circle with Center (-1, 4), radius = √3 is [tex](x+1)^2+(y-4)^2=3[/tex]