Answer:
[tex]x^{3}y^{3}\sqrt{(\frac{3}{5})y}[/tex]
Step-by-step explanation:
we have
[tex]\sqrt{\frac{3x^{12}y^{10}}{5x^{6}y^{3}}}[/tex]
Rewrite the expression
we know that
[tex]\frac{3x^{12}y^{10}}{5x^{6}y^{3}} =(\frac{3}{5})(\frac{x^{12}}{x^{6}})(\frac{y^{10}}{y^{3}})[/tex]
simplify
[tex](\frac{3}{5})(\frac{x^{12}}{x^{6}})(\frac{y^{10}}{y^{3}})=(\frac{3}{5})x^{6}y^{7}[/tex]
substitute
[tex]\sqrt{(\frac{3}{5})x^{6}y^{7}}=x^{3}y^{3}\sqrt{(\frac{3}{5})y}[/tex]