can someone help me with making the x the subject of the formula

100 point up for grabs pls helpppp


y =xa+ b

y =xa− b

y =x + 2 divided by two

Respuesta :

Answer:

[tex]\textsf{1)} \quad x=\dfrac{y-b}{a}[/tex]

[tex]\textsf{2)} \quad x=\dfrac{y+b}{a}[/tex]

[tex]\textsf{3)} \quad x=2y-2[/tex]

Step-by-step explanation:

Question 1

[tex]\boxed{\begin{aligned}&\textsf{Given}: \quad &y & =xa+b\\\\&\textsf{Subtract $b$ from both sides}: \quad & y-b&=xa+b-b \\\\&\textsf{Simplify}: \quad &y-b&=xa \\\\&\textsf{Divide both sides by $a$}: \quad &\dfrac{y-b}{a} &=\dfrac{xa}{a} \\\\&\textsf{Simplify}: \quad &\dfrac{y-b}{a} &=x\\\\&\textsf{Switch sides}: \quad & x&=\dfrac{y-b}{a}\end{aligned}}[/tex]

Question 2

[tex]\boxed{\begin{aligned}&\textsf{Given}: \quad &y & =xa-b\\\\&\textsf{Add $b$ to both sides}: \quad & y+b&=xa-b+b \\\\&\textsf{Simplify}: \quad &y+b&=xa \\\\&\textsf{Divide both sides by $a$}: \quad &\dfrac{y+b}{a} &=\dfrac{xa}{a} \\\\&\textsf{Simplify}: \quad &\dfrac{y+b}{a} &=x\\\\&\textsf{Switch sides}: \quad & x&=\dfrac{y+b}{a}\end{aligned}}[/tex]

Question 3

[tex]\boxed{\begin{aligned}&\textsf{Given}: \quad & y&=\dfrac{x+2}{2} \\\\&\textsf{Multiply both sides by $2$}: \quad & 2 \cdot y&=2 \cdot \dfrac{x+2}{2} \\\\&\textsf{Simplify}: \quad & 2y&=x+2 \\\\&\textsf{Subtract $2$ from both sides}: \quad & 2y-2&=x+2-2 \\\\&\textsf{Simplify}: \quad & 2y-2&=x \\\\&\textsf{Switch sides}: \quad &x&=2y-2\end{aligned}}[/tex]