Respuesta :

if we assume that S is  as tangent point, we can have the following formula:
(arcRS - arcSQ)/2 = ∠RPS= (arc RS - 84°) /2=26°
it means   arc RS - 84° = 52°, and then meas arc RS = 52+84=136°



Answer:

[tex]arc\ RS=136\°[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

we know that

The measurement of the external angle is the semi-difference of the arcs which comprises

In this problem

m∠RPS=[tex]26\°[/tex] ------> external angle

so

m∠RPS=[tex]\frac{1}{2}(arc\ RS-arc\ SQ)[/tex]

we have

m∠RPS=[tex]26\°[/tex]

[tex]arc\ SQ=84\°[/tex]

substitute the values

[tex]26\°=\frac{1}{2}(arc\ RS-84\°)[/tex]

Solve for arc RS

[tex]52\°=(arc\ RS-84\°)[/tex]

[tex]arc\ RS=52\°+84\°=136\°[/tex]



Ver imagen calculista