NO LINKS!!
The surface area S of the circular cylinder is given S = 2π(25) + 2π(5h)

Find the height h of the cylinder if the surface area is 785 sq. feet. Use 3.14 for π.

h = ________ ft

Respuesta :

Answer:

h = 20 feet

Step-by-step explanation:

s= 2[tex]\pi[/tex](25) + 2[tex]\pi[/tex](5h)  Substitute 3.14 for [tex]\pi[/tex] and 785 for s

785 = 2(3.14)(25)+2(3.14)(5)h

785 = 157 + 31.4h  Subtract 157 from both sides

785 - 157 = 157 - 157 + 31.4h

628 = 31.4 h  Divide both sides by 31.4

[tex]\frac{628}{31.4}[/tex] = [tex]\frac{31.4h}{31.4}[/tex]

20 = h

Answer:

h = 20 ft

Step-by-step explanation:

Given formula for the surface area of the cylinder:

[tex]\boxed{S = 2\pi(25) + 2\pi(5h)}[/tex]

Given:

  • S = 785 ft²
  • π = 3.14

Substitute the given values into the given formula and solve for h:

[tex]\implies 785=2(3.14)(25)+2(3.14)(5h)[/tex]

[tex]\implies 785=157+31.4h[/tex]

[tex]\implies 31.4h=785-157[/tex]

[tex]\implies 31.4h=628[/tex]

[tex]\implies h=20[/tex]

Therefore, the height of the cylinder is 20 ft.