To determine the impulse we use the fact that the impulse is equal to the change in momentum:
[tex]I=p_2-p_1[/tex]Where:
[tex]\begin{gathered} I=\text{ impulse} \\ p_2=\text{ final momentum} \\ p_1=\text{ initial momentum} \end{gathered}[/tex]The momentum is the product of the mass and the velocity, therefore, we have:
[tex]\begin{gathered} I=m_v_2-m_v_1 \\ \end{gathered}[/tex]Since the initial velocity is zero, we have:
[tex]\begin{gathered} I=m_2v_2-m_(0) \\ I=m(v_2) \end{gathered}[/tex]Now, we substitute the values:
[tex]I=(20608kg)(78\frac{m}{s})[/tex]Solving the operation:
[tex]I=1607424kg\frac{m}{s}[/tex]Therefore, the momentum is 1607424 kgm/s