Respuesta :

[tex]\begin{gathered} 1\text{ - odd} \\ 2\text{ - } \\ 3\text{ - odd} \\ 4\text{ - } \\ 5\text{ - odd} \\ 6- \\ 7\text{ - odd} \\ 8\text{ - } \\ 9\text{ - odd} \\ 10\text{ - } \\ 11\text{ - odd} \\ 12 \end{gathered}[/tex]

We have a total of 12 numbers, where 6 of them are odd, then, the probability of picking an odd number is

[tex]P(\text{odd\rparen = 6/12 = 1/2}[/tex]

The probability of an event A and B is

[tex]P(A\text{ and }B)=P(A)\cdot P(B)[/tex]

Therefore

[tex]\begin{gathered} P(\text{odd and odd})=P(\text{odd})\cdot P(\text{odd}) \\ \\ P(\text{odd and odd})=\frac{1}{2}\cdot\frac{1}{2} \\ \\ P(\text{odd and odd})=\frac{1}{4} \end{gathered}[/tex]

The probability of both numbers being odd is 1/4