Given
Total marbles 5+2+3 =10
[tex]\begin{gathered} \text{probability of selecting blue=}\frac{5}{10}=\frac{1}{2} \\ \\ \text{porbability of selceting red =}\frac{2}{10}=\frac{1}{5} \\ \text{Probalility of selecting gr}een\text{=}\frac{3}{10} \\ \end{gathered}[/tex]Now probability of NOT selecting green Marble
[tex]\begin{gathered} \text{Probability of selecting NOT gr}een\text{ marbles=1-}\frac{3}{10} \\ \\ \text{Probability of selecting NOT gr}een\text{ marbles=}\frac{1}{1}\text{-}\frac{3}{10} \\ \text{Probability of selecting NOT gr}een\text{ marbles=}\frac{10-3}{10}=\frac{7}{10} \end{gathered}[/tex]Alternatively (second method )
Probability of selecting NOT a green marble means you will be selecting either blue marbles or red marbles
[tex]\text{Probability of selecting NOT a green =}\frac{5}{10}+\frac{2}{10}=\frac{7}{10}[/tex]The final answer
[tex]\begin{gathered} \text{Fraction }\frac{7}{10} \\ \text{Decimal 0.7} \\ \text{Percetages 70\%} \end{gathered}[/tex]