Three of the vertices of a parallelogram are A(2, 4), B(6,2) and C (8, 6).(a) Plot the point A, B and C in the coordinate plane(b) Find the mid-point of diagonal AC(c) Find the fourth vertex D(d) Find the length of diagonal AC(e) Find the perimeter of ABCD.

Respuesta :

Given:

Three of the vertices of a parallelogram are given as

[tex]\begin{gathered} A\left(2,4\right)_ \\ B\left(6,2\right) \\ C(8,6) \end{gathered}[/tex]

Required:

(a) Plot the point A, B and C in the coordinate plane

(b) Find the mid-point of diagonal AC

(c) Find the fourth vertex D

(d) Find the length of diagonal AC

(e) Find the perimeter of ABCD.

Explanation:

Take D coordinate as (x,y)

now midpoint of AC and BD is same so

[tex]\begin{gathered} (\frac{2+8}{2},\frac{4+6}{2})=(\frac{x+6}{2},\frac{2+y}{2}) \\ \\ (5,5)=(\frac{x+6}{2},\frac{2+y}{2}) \\ \\ x=4,y=8 \end{gathered}[/tex]

midpoint of AC

[tex](\frac{2+8}{2},\frac{4+6}{2})=(5,5)[/tex]

length of diagonal AC

[tex]AC=\sqrt{36+4}=2\sqrt{10}[/tex]

perimeter of ABCD

[tex]AB=\sqrt{16+4}=\sqrt{20}[/tex][tex]BC=\sqrt{4+16}=\sqrt{20}[/tex]

perimeter is

[tex]2(AB+BC)=4\sqrt{20}[/tex]

Final answer:

(b) Find the mid-point of diagonal AC

[tex]\begin{equation*} (5,5) \end{equation*}[/tex]

(c) Find the fourth vertex D

[tex](4,8)[/tex]

(d) Find the length of diagonal AC

[tex]2\sqrt{10}[/tex]

(e) Find the perimeter of ABCD.

[tex]\begin{equation*} 4\sqrt{20} \end{equation*}[/tex]

Ver imagen SarayuQ39280