Respuesta :

Given:

The point (-4,4) on the terminal arm of the angle θ.

Required:

Find exact value of fractional form of sin θ.

Explanation:

Let x = -4

Let y = 4

Let r = the length of a line segment drawn from the origin to the point

[tex]\begin{gathered} r=\sqrt{x^2+y^2} \\ r=\sqrt{(-4)^2+4^2} \\ r=\sqrt{16+16} \\ r=\sqrt{32} \\ r=\sqrt{2\times16} \\ r=4\sqrt{2} \end{gathered}[/tex][tex]\begin{gathered} sin\theta=\frac{y}{r} \\ sin\theta=\frac{4}{4\sqrt{2}} \\ =\frac{1}{\sqrt{2}} \end{gathered}[/tex]

Answer:

This is the answer.