Given:
The point (-4,4) on the terminal arm of the angle θ.
Required:
Find exact value of fractional form of sin θ.
Explanation:
Let x = -4
Let y = 4
Let r = the length of a line segment drawn from the origin to the point
[tex]\begin{gathered} r=\sqrt{x^2+y^2} \\ r=\sqrt{(-4)^2+4^2} \\ r=\sqrt{16+16} \\ r=\sqrt{32} \\ r=\sqrt{2\times16} \\ r=4\sqrt{2} \end{gathered}[/tex][tex]\begin{gathered} sin\theta=\frac{y}{r} \\ sin\theta=\frac{4}{4\sqrt{2}} \\ =\frac{1}{\sqrt{2}} \end{gathered}[/tex]Answer:
This is the answer.