Determine whether there is a minimum or maximum value to the quadratic function.h(t) = −8t2 + 2t − 1Find the minimum or maximum value of h.Find the axis of symmetry.

Respuesta :

For a quadratic function in the form:

[tex]f(x)=ax^2+bx+c[/tex]

If a>0 the function opens up, it has a minimum

If a<0 the function opens down, it has a maximum

Axis of symmetry is x= -b/2a

Vertex: (-b/2a, f(-b/2a)), f(-b/2a) is the maximum or minimum value

For the given function:

[tex]h(t)=-8t^2+2t-1[/tex]

a= -8

Parabola opens down. It has a maximum value

Find the axis of symmetry:

[tex]t=-\frac{2}{2(-8)}=\frac{-2}{-16}=\frac{1}{8}[/tex]

Find the y-coordinate of the vertex:

[tex]\begin{gathered} h(\frac{1}{8})=-8(\frac{1}{8})\placeholder{⬚}^2+2(\frac{1}{8})-1 \\ \\ h(\frac{1}{8})=-8(\frac{1}{64})+\frac{2}{8}-1 \\ \\ h(\frac{1}{8})=-\frac{1}{8}+\frac{2}{8}-1 \\ \\ h(\frac{1}{8})=\frac{1}{8}-1 \\ \\ h(\frac{1}{8})=\frac{1-8}{8} \\ \\ h(\frac{1}{8})=-\frac{7}{8} \end{gathered}[/tex]

______________

Then, the given function has a maximum value, the maximum value is -7/8, and the axis of symmetry is t=1/8