Respuesta :

[tex]H)\frac{\text{mAC}}{360}\cdot25\pi[/tex]

Explanation

when you have an angle in degrees the area of the circular sector is given by:

[tex]\begin{gathered} \text{Area}_{cs}=\frac{\alpha}{360}\cdot\pi r^2 \\ \text{where }\alpha\text{ is the angle and r is the radius} \end{gathered}[/tex]

then

let

radius=5

[tex]angle=angle\text{ mAC}[/tex]

replace,

[tex]\begin{gathered} \text{Area}_{cs}=\frac{\alpha}{360}\cdot\pi r^2 \\ \text{Area}_{cs}=\frac{\text{mAC}}{360}\cdot\pi\cdot5^2 \\ \text{Area}_{cs}=\frac{\text{mAC}}{360}\cdot25\pi \end{gathered}[/tex]

so, the answer is

[tex]H)\frac{\text{mAC}}{360}\cdot25\pi[/tex]

I hope this helps you