Given:
The system of equations is,
[tex]\begin{gathered} 4x-3y=11\text{ . . . . . . (1)} \\ 2x-y=-8\text{ . . . . . .(2)} \end{gathered}[/tex]The objective is to solve the equations using the elimination method.
Explanation:
To solve the equations multiply the equation (2) by -3.
[tex]\begin{gathered} -3\lbrack2x-y=-8\rbrack \\ -6x+3y=+24\text{ . . . . (3)} \end{gathered}[/tex]On solving equations (1) and (3),
[tex]\begin{gathered} 4x-3y=11 \\ \frac{-6x+3y=24}{-2x=35} \end{gathered}[/tex]On further solving the above equation,
[tex]x=-\frac{35}{2}[/tex]Substitute the value of x in equation (2).
[tex]\begin{gathered} 2(-\frac{35}{2})-y=-8 \\ -35-y=-8 \\ -y=-8+35 \\ -y=27 \\ y=-27 \end{gathered}[/tex]Hence, the value of x is (-35/2) and the value of y is -27.