Given that the mass, m = 68.05 kg and the mass of mercury is
[tex]M\text{ = 3.3}\times10^{23}\text{ kg}[/tex]
The radius of mercury is
[tex]R=\text{ 2.44 }\times10^6\text{ m}[/tex]
The gravitational constant is
[tex]G=6.67\times\frac{10^{-11}Nm^2}{\operatorname{kg}^2}[/tex]
The gravitational force on the surface of mercury will be
[tex]F=\frac{\text{GMm}}{r^2}[/tex]
Substituting the values, the gravitational force will be
[tex]\begin{gathered} F=\frac{6.67\times10^{-11}\times3.3\times10^{23}\times68.05\text{ }}{(2.44\times10^6)^2} \\ =251.58\text{ N} \end{gathered}[/tex]
The gravitational force will be 251.58 N