Respuesta :

[tex]\begin{gathered} \frac{5\pi}{7};II\text{ quadrant} \\ \theta r=\pi-\frac{5\pi}{7}=\frac{2}{7}\pi \end{gathered}[/tex]

56.

[tex]\begin{gathered} \frac{17\pi}{3};IV\text{ quadrant} \\ \theta r=2\pi-\frac{17\pi}{3}=\frac{1}{3}\pi \end{gathered}[/tex]

36.

[tex]\begin{gathered} 170,II\text{ quadrant} \\ \theta r=180-170=10 \end{gathered}[/tex]

48.

[tex]\begin{gathered} -359,I\text{ quadrant} \\ \theta r=360+(-359)=1 \end{gathered}[/tex]

60.

[tex]\begin{gathered} -\frac{13\pi}{3},IV\text{ quadrant} \\ \theta r=-\frac{\pi}{3} \end{gathered}[/tex]

40.

[tex]\begin{gathered} 351,IV\text{ quadrant} \\ \theta r=360-351=9 \end{gathered}[/tex]

52.

[tex]\begin{gathered} 553,III\text{ quadrant} \\ \theta r=193-180=13 \end{gathered}[/tex]