The top thing is question my answer is in the box am I correct and can you show me how to do it right if not

Formula
[tex]M=\frac{pm(1+m)^{na}}{(1+m)^{na}-1}[/tex]Given parameters
[tex]\begin{gathered} p=3,500 \\ m=\frac{8}{12\times100}=\frac{0.08}{12} \\ n=12\text{ } \\ a=2 \end{gathered}[/tex]Substitute the given parameters into the formula
[tex]M=\frac{3500(\frac{0.08}{12})(1+\frac{0.08}{12})^{24}}{(1+\frac{0.08}{12})^{24}-1}[/tex][tex]\begin{gathered} M=\frac{3500(\frac{0.08}{12})(1+\frac{0.08}{12})^{24}}{(1+\frac{0.08}{12})^{24}-1} \\ \\ \text{Remove the parent}heses\text{ (a)=a} \\ \frac{3500\cdot\frac{0.08}{12}\left(1+\frac{0.08}{12}\right)^{24}}{\left(1+\frac{0.08}{12}\right)^{24}-1} \\ \\ \text{Now} \\ \frac{3500\cdot\frac{0.08}{12}\mleft(\frac{0.08}{12}+1\mright)^{24}}{1.0066^{24}^{}-1} \\ \text{Multiply the numerator} \\ \frac{27.367}{1.00666^{24}-1} \\ \text{simplify} \\ =\frac{27.36738}{0.17288}=158.296 \\ \end{gathered}[/tex]The final answer
[tex]\text{ \$158.30}[/tex]