We are given the following two endpoints
[tex]A\mleft(-4,6\mright)\text{ and }B\mleft(0,5\mright)[/tex]We are asked to find the coordinates of the midpoint of segment AB
Recall that the midpoint formula is given by
[tex]\mleft(x_m,y_m\mright)=\mleft(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\mright)[/tex][tex]\text{where (}x_1,y_1)=\mleft(-4,6\mright)\text{ and (}x_2,y_2)=\mleft(0,5\mright)\text{ }[/tex]Let us substitute the given values into the midpoint formula
[tex]\begin{gathered} (x_m,y_m)=(\frac{-4_{}+0_{}}{2},\frac{6_{}+5_{}}{2}) \\ (x_m,y_m)=(\frac{-4_{}}{2},\frac{11_{}}{2}) \\ (x_m,y_m)=(-2,\frac{11_{}}{2}) \end{gathered}[/tex]Therefore, the coordinates of the midpoint between segment AB are found to be
[tex](x_m,y_m)=(-2,\frac{11_{}}{2})[/tex]