Recall that:
[tex]P(success)=\frac{favorable\text{ outcomes}}{total\text{ outccomes}}.[/tex]
Therefore:
[tex]\begin{gathered} P(male\text{ and no\rparen=}\frac{123}{700}, \\ P(woman\text{ and don't know\rparen=}\frac{94}{700}. \end{gathered}[/tex]
Now, recall that:
[tex]P(A|B)=\frac{P(A\cap B)}{P(B)}.[/tex]
Therefore:
[tex]\begin{gathered} P(yes|male)=\frac{P(male\text{ and yes\rparen}}{P(male)}=\frac{\frac{152}{700}}{\frac{348}{700}}=\frac{152}{348}, \\ P(don^{\prime}t\text{ know\mid woman\rparen=}\frac{\frac{94}{700}}{\frac{352}{700}}=\frac{94}{352}. \end{gathered}[/tex]
Simplifying all of the above results, we get:
[tex]\begin{gathered} P(male\text{ and no\rparen=}\frac{123}{700}, \\ P(woman\text{ and don't know\rparen=}\frac{47}{350}, \\ P(yes|male)=\frac{38}{87}, \\ P(don^{\prime}t\text{ know\mid woman\rparen=}\frac{47}{176}. \end{gathered}[/tex]
Answer:
[tex]\begin{gathered} P(male\text{ and no}\operatorname{\rparen}\text{=}\frac{123}{700}\text{, } \\ P(woman\text{ and don't know\rparen=}\frac{47}{350}, \\ P(yes|male)=\frac{38}{87}, \\ P(don^{\prime}t\text{ know\mid woman\rparen=}\frac{47}{176}. \end{gathered}[/tex]