Respuesta :

To solve this, we will use the distance formula;

[tex]|RS|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

from the question;

RS = 13 x₁=1 y₁=3 x₂=6 y₂=y

substituting into the formula;

[tex]13=\text{ }\sqrt{(6-1)^2+(y-3)^2}[/tex][tex]13\text{ = }\sqrt{(5)^2+(y-3)^2}[/tex]

Take the square of both-side of the equation

[tex]13^2=5^2+(y-3)^2[/tex]

169 = 25 + (y-3)²

subtract 25 from both-side of the equation

144 = (y-3)²

Take the square root of both-side

[tex]\sqrt{144}=y-3[/tex]

12 = y-3

add 3 to both-side of the equation

15=y

y=15