To solve this, we will use the distance formula;
[tex]|RS|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]from the question;
RS = 13 x₁=1 y₁=3 x₂=6 y₂=y
substituting into the formula;
[tex]13=\text{ }\sqrt{(6-1)^2+(y-3)^2}[/tex][tex]13\text{ = }\sqrt{(5)^2+(y-3)^2}[/tex]Take the square of both-side of the equation
[tex]13^2=5^2+(y-3)^2[/tex]169 = 25 + (y-3)²
subtract 25 from both-side of the equation
144 = (y-3)²
Take the square root of both-side
[tex]\sqrt{144}=y-3[/tex]12 = y-3
add 3 to both-side of the equation
15=y
y=15