What is the slope of the line created by this equation?Round you answer out to two decimal places.5x+5y=10

SOLUTION
Write out the equation given
[tex]5x+5y=10[/tex]To obtain the slope of the line, we need to write the equation in the slope-intercept form
[tex]\begin{gathered} y=mx+c \\ \text{where m=slope, c=intercept on y} \end{gathered}[/tex]To write in slope - intercept form, we nake y the subject of the formula from the equation given.
[tex]\begin{gathered} 5x+5y=10 \\ \text{divide through by 5, we have } \\ \frac{5x}{5}+\frac{5y}{5}=\frac{10}{5} \\ x+y=2 \end{gathered}[/tex]Subtract x from both sides, we have
[tex]\begin{gathered} x+y=2 \\ x-x+y=2-x \\ y=-x+2 \end{gathered}[/tex]The equation of the line becomes
[tex]\begin{gathered} y=-x+2 \\ \text{where slope,m=-1} \end{gathered}[/tex]Therefore
Answer: Slope = -1