eGiven:
The mass of the crate is,
[tex]m=35\text{ kg}[/tex]The coefficient of friction between the floor and the crate is,
[tex]\mu=0.37[/tex]The force applied by the man is ,
[tex]F=100\text{ N}[/tex]The frictional force on the crate is,
[tex]\begin{gathered} f=\mu mg \\ =0.37\times35\times9.8 \\ =126.9N \end{gathered}[/tex]Here the applied force is less than the frictional force. so the crate will not move.
part b
if the other person applies force,
[tex]F_2[/tex]WE CAN WRITE the vertical force,
[tex]F_N=mg-F_2[/tex]the frictional force is then,
[tex]f=\mu(mg-F_2)[/tex]we can say,
[tex]\begin{gathered} 100>f \\ 100>0.37(35\times9.8-F_2) \\ F_2>72.7\text{ N} \end{gathered}[/tex]part c
the maximum frictional force is as calculated above,
[tex]f_{\max }=126.9\text{N}[/tex]the extra force by the other person if added we can write,
[tex]\begin{gathered} F_1+F_2>126.9 \\ 100+F_2>126.9 \\ F_2>26.9\text{ N} \end{gathered}[/tex]hence the added force in26.9 N