Given:
[tex]\begin{gathered} a=2i+3 \\ b=i-1 \\ c=-3i+2 \end{gathered}[/tex]You know that:
[tex]a-b-c=(2i+3)-(i-1)-(-3i+2)[/tex]In order to solve the operation, you can follow these steps:
1. Distribute the negative signs. Remember the Sign Rules for Multiplication:
[tex]\begin{gathered} +\cdot+=+ \\ -\cdot-=+ \\ +\cdot-=- \\ -\cdot+=- \end{gathered}[/tex]Then:
[tex]=2i+3-i+1+3i-2[/tex]2. Combine the like terms (add the Real Parts and add the Imaginary Parts):
[tex]=4i+2[/tex]Hence, the answer is: Option B.