Respuesta :

The volume of a square pyramid is

[tex]V=\frac{1}{3}\cdot a^2\cdot h[/tex]

Where a is the length of each base side.

First, we have to find a using the perimeter.

[tex]\begin{gathered} P=4a \\ 56in=4a \\ a=\frac{56in}{4} \\ a=14in \end{gathered}[/tex]

Then, we find h using Pythagorean's Theorem,

[tex]c^2=a^2+b^2[/tex]

Where c = 25in, b = 7in, and a represents the height h

[tex]\begin{gathered} (25in)^2=h^2+(7in)^2 \\ 625in^2=h^2+49in^2 \\ h^2=625in^2-49in^2 \\ h=\sqrt[]{576in^2} \\ h=24in \end{gathered}[/tex]

Now, we find the volume

[tex]\begin{gathered} V=\frac{1}{3}\cdot(14in)^2\cdot24in \\ V=\frac{1}{3}\cdot196in^2\cdot24in \\ V=1,568in^3 \end{gathered}[/tex]

Hence, the volume of the square pyramid is 1,568 cubic inches.