using the distance formula from above find the distance between (-15,-18) and (18,-2). round to the nearest tenth.using the distance formula from above find the distance between (5,9) and (-7,-7). round to the nearest tenth.using the distance formula from above find the distance between (3,8) and (9,10). round to nearest tenth.

using the distance formula from above find the distance between 1518 and 182 round to the nearest tenthusing the distance formula from above find the distance b class=

Respuesta :

Answer:

[tex]\begin{gathered} 1.\text{ }d=36.7 \\ 2.\text{ }d=20 \\ 3.\text{ }d=6.3 \end{gathered}[/tex]

Step by step explanation:

The distance between two points is represented by the following expression:

[tex]d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

1. Then, for (-15, -18) and (18, -2)

[tex]\begin{gathered} d=\sqrt[]{(18-(-15))^2+(-2-(-18))^2} \\ d=\sqrt[]{(33)^2+(16)^2} \\ d=\sqrt[]{1089+256} \\ d=\sqrt[]{1345} \\ d\approx36.67 \\ \text{Rounding to the nearest tenth:} \\ d=36.7 \end{gathered}[/tex]

2. Now, for (5,9) and (-7,-7)

[tex]\begin{gathered} d=\sqrt[]{(-7-5)^2+(-7-9)^2} \\ d=\sqrt[]{(-12)^2+(-16)^2} \\ d=\sqrt[]{144+256} \\ d=\sqrt[]{400} \\ d=20 \end{gathered}[/tex]

3. Finally, for (3,8) and (9,10)

[tex]\begin{gathered} d=\sqrt[]{(9-3)^2+(10-8)^2} \\ d=\sqrt[]{6^2+2^2} \\ d=\sqrt[]{36+4} \\ d=\sqrt[]{40} \\ d=2\sqrt[]{10} \\ \text{Rounding to the nearest tenth:} \\ d=6.3 \end{gathered}[/tex]