Respuesta :

Given:

The geometric series

[tex]\sum_{n\mathop{=}1}^9500(1.05)^{n-1}[/tex]

Required:

What is the sum of gemetric series?

Explanation:

The formula for sum of geometric series with finite terms:

[tex]\begin{gathered} S_n=\frac{a(r^n-1)}{r-1} \\ Where, \\ a(first\text{ }term) \\ r(common\text{ }ratio) \end{gathered}[/tex]

So, the series:

[tex]\begin{gathered} =500+500(1.05)+500(1.05)^2+...... \\ So,r=\frac{500(1.05)}{500} \\ r=1.05 \end{gathered}[/tex]

Now, sum is:

[tex]\begin{gathered} S_9=\frac{500(1.05^9-1)}{(9-1)} \\ =\frac{500(0.551)}{8} \\ =\frac{275.5}{8} \\ =34.4 \end{gathered}[/tex]

Answer:

The sum is 34.4