Respuesta :

[tex]\begin{gathered} \text{Taking triangle DCB, we have:} \\ x^2=h^2+3^2 \\ x^2=h^2+9\ldots eqn\text{ a)} \end{gathered}[/tex][tex]\begin{gathered} \text{Taking triangle ACD, we have:} \\ y^2=h^2+12^2 \\ y^2=h^2+144\ldots eqn\text{ b)} \end{gathered}[/tex][tex]\begin{gathered} \text{Taking triangle ACB, we have:} \\ 15^2=x^2+y^2 \\ Substituting\text{ the equations a) and b) above, we have:} \\ 15^2=h^2+9+h^2+144 \\ 225-9-144=2h^2 \\ 2h^2=72 \\ h^2=\frac{72}{2} \\ h^2=36 \\ h=\sqrt[]{36} \\ h=6 \end{gathered}[/tex]

Hence, the value of height,h, is 6