Data:
• A,( 0, 1,820,000)
,• B,( 29, 1,200,000)
,• Year 2 - year 1 = 2019 - 1990 = 29
a)
Based on the point A and B, the linear model is as follows:
• Slope ( ,m ,)
[tex]m=\frac{1,200,000-1,820,000}{29\text{ -}0}=-\frac{620,000}{29}[/tex]• Parameter b
[tex]\begin{gathered} P(t)=mt+b \\ 1,200,000=-\frac{620,000}{29}\cdot29+b \\ 1,200,000=-620,000+b \\ b=1,200,000+620,000=1,820,000 \end{gathered}[/tex]Answer a) (linear model):
[tex]P(t)=-\frac{620,000}{29}t+1,820,000[/tex]b)
2032-1990 = 42
[tex]\begin{gathered} P(42)=-\frac{620,000}{29}\cdot42+1,820,000 \\ P(42)=922068.97 \end{gathered}[/tex]Answer of the number of violent crimes in 2032:
[tex]P(42)=922068.97[/tex]c)
[tex]\begin{gathered} 800,000=-\frac{620,000}{29}\cdot t+1,820,000 \\ 800,000-1,820,000=-\frac{620,000}{29}\cdot t \\ -1,020,000=-\frac{620,000}{29}\cdot t \\ t=\frac{-1,020,000}{-\frac{620,000}{29}}=47.71 \\ 1990+47.71=2037.71 \end{gathered}[/tex]Answer of c: 2037