Respuesta :

The expression given is,

[tex]4x^5y^2\cdot \:2xy^{-3}[/tex]

Multiply the numbers:

[tex]\begin{gathered} \:4\cdot \:2=8 \\ \therefore4x^5y^2\times2xy^{-3}=8x^5y^2xy^{\left\{-3\right\}} \end{gathered}[/tex]

Simplify

[tex]8x^5xy^2y^{-3}=8x^6y^2y^{\left\{-3\right\}}[/tex]

Also,

[tex]\begin{gathered} y^2y^{-3}=y^{2-3}=y^{-1}=\frac{1}{y} \\ \therefore8x^6y^2y^{\left\{-3\right\}}=8x^6\frac{1}{y}=\frac{8x^6}{y} \end{gathered}[/tex]

Hence, the answer is

[tex]\frac{8x^{6}}{y}\text{ \lparen Option 2\rparen}[/tex]