Refer to the figure below. Then find the indicated values:A) f(7)B) g(0) + f(3)C) f(g(7))D) g(f(8))E) x if f(x) =2

Given the graph in the image question, it can be seen that:
[tex]\begin{gathered} y=f(x) \\ y=g(x) \end{gathered}[/tex]To answer the questions, we have:
a. f(7)
[tex]f(7)=1[/tex]b. g(0)+f(3)
[tex]\begin{gathered} g(0)=6 \\ f(3)=-1 \\ g(0)+f(3)=6+(-1)_{} \\ =6-1 \\ =5 \end{gathered}[/tex]c. f(g(7))
[tex]\begin{gathered} We\text{ do }g(7)\text{ first and then do the f(x) of the result:} \\ g(7)=6 \\ f(g(7))=f(6) \\ =1 \end{gathered}[/tex]d. g(f(8))
[tex]\begin{gathered} We\text{ do f}(8)\text{ first and then do the f(x) of the result:} \\ f(8)=1 \\ g(f(8))=g(1) \\ =6 \end{gathered}[/tex]e. x if f(x)=2
[tex]\begin{gathered} f(x)=2 \\ \text{ To get }f(x),\text{ we look at the point 2 on the y axis and trace it to x} \\ f(x)=2\text{ at point }-7\text{ on the x axis} \\ \text{Hence, x=-7} \end{gathered}[/tex]