Respuesta :

SOLUTION

Write out the function given.

[tex]f(x)=1+\log _2x[/tex]

To plot two point in the function, let obtain the point in from the function.

[tex]\begin{gathered} \text{let x=4,} \\ f(x)=1+\log _24 \\ f(x)=1+\log _22^2=1+2\log _22 \\ f(x)=1+2=3 \\ \end{gathered}[/tex]

Then, the first point is

[tex](4,3)[/tex]

Similarly, let x=2

[tex]\begin{gathered} \text{if x=2} \\ f(x)=1+\log _22=1+1=2 \\ \text{Then} \\ (2,2) \end{gathered}[/tex]

Then the point is

[tex](2,2)[/tex]

The two point to use are

[tex](4,3)\text{ and (2,2)}[/tex]

The point are (2,2) and (4,3)

Then the vertical asymptotes is obtain by equating the logatithm expression to zero

Hence

[tex]x=0[/tex]

Vertical asymptotes is x=0

Hence

The image of the graph is given below

Ver imagen AlbinH609276