Respuesta :

Given the point P(-5/13,12/13)

the angle t is

then

since we know x and y values (-5/13,12/13) we can solve theta

where

Opp = -5/13

Adj = 12/13

[tex]tan(\theta)=\frac{Opp}{Adj}[/tex][tex]tan(\theta)=\frac{\frac{-5}{3}}{\frac{12}{13}}[/tex][tex]tan(\theta)=\frac{-5*13}{3*12}[/tex][tex]tan(\theta)=\frac{-65}{36}[/tex][tex]\theta=ArcTan(\frac{-65}{36})[/tex][tex]\theta=61.02°[/tex]

Adding the 90° of the first quadrant

The angle t is

[tex]t=61.02+90[/tex][tex]t=151.02[/tex]

to rads

[tex]t=\frac{151.02\pi}{180}[/tex]

then sin t

[tex]sin(t)=0.48450[/tex]

Ver imagen AdyanR676439