Respuesta :

AB=6

Explanation

Step 1

set the equations

due to lengths AD and DC are the same, and the distance DB is common for triangels ADB and DBC

we can state that

triiangles are similar,so

[tex]AB=AC\Rightarrow equation(1)[/tex]

and

[tex]\begin{gathered} AC=12 \\ AC=AB+BC \\ AB+BC=12\Rightarrow equation(2) \end{gathered}[/tex]

Step 2

solve for AB

a) replace the AB value from equation(1) into equation(2)

[tex]\begin{gathered} AB+BC=12\Rightarrow equation(2) \\ AB+AB=12 \\ \text{add like terms} \\ 2(AB)=12 \\ \text{divide both sides by 2} \\ \frac{2(AB)}{2}=\frac{12}{2} \\ AB=6 \end{gathered}[/tex]

therefore, the answer is

AB=6

I hope this helps you