Respuesta :

Answer:

1)

[tex]P(t)=1633e^{0.0087t}[/tex]

Explanation:

Since we are taking t = 0 as 1900. The initial population is the population in 1900:

[tex]P_0=1633[/tex]

We can start writting the exponential model:

[tex]P(t)=1633e^{kt}[/tex]

:

We know that the population in 1950 (t = 50 in this model) is 2525. Then, we can find k by:

[tex]P(50)=2525=1633e^{k\cdot50}[/tex]

And solve for k:

[tex]\frac{2525}{1633}=e^{50k}[/tex]

Now, we can apply natural logarithm on both sides:

[tex]\ln(\frac{2525}{1633})=\ln(e^{50k})[/tex]

Since natural log and the exponential functions are inverse functions:

[tex]\ln(\frac{2525}{1633})=50k[/tex][tex]k=\frac{\ln(\frac{2525}{1633})}{50}[/tex][tex]k\approx0.0087[/tex]

Thus, the exponential model is:

[tex]P(t)=1633e^{0.0087t}[/tex] Question 2

Now, we need to use the model we just create to find the predicted population by the model:

At year 1900, t = 0 (that's how the problem asked us to define t)

Then

[tex]P\left(0\right)=1633e^{0.0087\cdot0}=1633e^0=1633[/tex]

At year 1920, t = 20

[tex]P(20)=1633e^{0.0087\cdot20}=1633e^{0.174}=1943[/tex]

At year 1940, t = 40:

[tex]P(40)=1633e^{0.0087\cdot40}=1633e^{0.348}=2313[/tex]

At year 1960, t = 60

[tex]P(60)=1633e^{0.0087\cdot60}=1633e^{0.522}=2752[/tex]

At year 1980, t = 80

[tex]P(80)=1633e^{0.0087\cdot80}=1633e^{0.696}=3275[/tex]

At year 2000, t = 100

[tex]P(100)=1633e^{0.0087\cdot100}=1633e^{0.87}=3898[/tex]

At year 2020, t = 120

[tex]P(120)=1633e^{0.0087\cdot120}=1633e^{1.044}=4639[/tex]

At year 2040, t = 140

[tex]P(140)=1633e^{0.0087\cdot140}=1633e^{1.218}=5520[/tex]