[tex]P=15+\frac{5}{13}d[/tex]
1. The pressure of sea water is 100 pounds per square foot (P=100) at a depth (d):
[tex]100=15+\frac{5}{13}d[/tex]
Solve d:
[tex]\begin{gathered} \text{Subtract 15 in both sides of the equation:} \\ 100-15=15-15+\frac{5}{13}d \\ \\ 85=\frac{5}{13}d \\ \\ \text{Multiply both sides of the equation by 13/5:} \\ \frac{13}{5}\cdot85=\frac{13}{5}\cdot\frac{5}{13}d \\ \\ 221=d \\ \\ d=221 \end{gathered}[/tex]
Then, The pressure of sea water is 100 pounds per square foot at a depth of 221 feet below the surface of the water
2. Find the pressure of the water (P) when d=80
[tex]\begin{gathered} P=15+\frac{5}{13}(80) \\ \\ P=15+\frac{400}{13} \\ \\ P=\frac{195+400}{13} \\ \\ P=\frac{595}{13} \\ \\ P=45.8 \end{gathered}[/tex]
Then, the pressure of sea water is 45.8 pounds per square foot at a depth of 80 feet below the surface of the water