Find dy/dx (the derivative ) of f(x) = 4x^2 using limits definition of the derivitive (of limit of the DQ when h> 0Formulas neededa) Equation of a line in slopeyintercept form y = f(x) = mx + bb) Equation of a line slopepoint y y1 = m (x x1)

Respuesta :

Given

[tex]f(x)=4x^2[/tex]

Find

derivative of the function

Explanation

By limit definition ,

[tex]\frac{dy}{dx}=\lim_{h\to0}\frac{f(x+h)-f(x)}{h}[/tex]

so, we have

[tex]\begin{gathered} \frac{dy}{dx}=\lim_{h\to0}\frac{\lbrace4\left(x+h\right)^2-4x^2\rbrace}{h} \\ \frac{dy}{dx}=\lim_{h\to0}\frac{\lbrace4(x^2+h^2+2xh)^-4x^2\rbrace}{h} \\ \frac{dy}{dx}=\lim_{h\to0}\frac{\lbrace4x^2+4h^2+8xh-4x^2\rbrace}{h} \\ \frac{dy}{dx}=\lim_{h\to0}\frac{8xh+4h^2}{h} \\ \frac{dy}{dx}=\lim_{h\to0}8x+4h \\ \frac{dy}{dx}=8x \end{gathered}[/tex]

Final Answer

The derivative of the function is 8x