1. P(adult and vanilla)2. P(chocolate/adult)3. P(adult/chocolate)4. P(not vanilla/teen)5. P(teen/not vanilla)6. P(neither/teen or adult)7. P(teen or adult/neither)Answer the following problems about two way frequency tables and make sure to reduce your fraction.

1 Padult and vanilla2 Pchocolateadult3 Padultchocolate4 Pnot vanillateen5 Pteennot vanilla6 Pneitherteen or adult7 Pteen or adultneitherAnswer the following pro class=

Respuesta :

From the given table, the total number of people, T=269.

1)

The number of adults who like vanila, N=54.

So, P(adult and vanilla) can be found as,

[tex]P\mleft(adult\text{ and vanilla}\mright)=\frac{N}{T}=\frac{54}{269}[/tex]

2)

P(chocolate/adult) can be found as,

[tex]P\mleft(chocolate/adult\mright)=\frac{P(\text{choclate and adult)}}{P(\text{adult)}}=\frac{\frac{55}{269}}{\frac{119}{269}}=\frac{55}{269}[/tex]

3)

[tex]P\mleft(adult/chocolate\mright)=\frac{P(\text{choclate and adult)}}{P(\text{chocolate)}}=\frac{\frac{55}{269}}{\frac{107}{269}}=\frac{55}{107}[/tex]

4)

[tex]P\mleft(notvanilla/teen\mright)=\frac{P(not\text{ vanilla and t}een)}{P(\text{teen)}}=\frac{\frac{12+45}{2}}{\frac{73}{269}}=\frac{57}{73}[/tex]

5)

[tex]P\mleft(teen/notvanilla\mright)=\frac{P(\text{teen and not vanilla)}}{P(\text{not vanilla)}}=\frac{\frac{12+45}{269}}{\frac{269-92}{269}}=\frac{57}{177}[/tex]

6)

[tex]P\mleft(neither/teenoradult\mright)=\frac{P(\text{neither and teen or adult)}}{P(\text{teen or adult)}}=\frac{\frac{45+10}{269}}{\frac{73+119}{269}}=\frac{55}{192}[/tex]

7)

[tex]P\mleft(teenoradult/neither\mright)=\frac{P(\text{teen or adult and neither)}}{P(\text{neither)}}=\frac{\frac{45+10}{269}}{\frac{70}{269}}=\frac{55}{70}=\frac{11}{14}[/tex]