Given the number of trials and the probability of success, determine the probability indicated: (Hint use binomial distribution formula use factorials ! in showing your work)n = 15, p = 0.4, find P(4 successes) n = 12, p = 0.2, find P(2 success ) n = 20, p = 0.05, find P(at most 3 successes) (hint for c. P (at most 3 successes) = P(x ≤3)= P(x= 0) + P(x = 1)+ P(x = 2)+ P(x = 3)

Respuesta :

Solving the first problem: n=15 and p=0.4.

Explanation:

Step 1. We are given the number of trials n

[tex]n=15[/tex]

And the probability of success:

[tex]p=0.4[/tex]

We need to find the probability of 4 successes P(4).

Step 2. Since it s a problem where the outcome is either success or failure, we use the binomial distribution formula:

[tex]p(x)=\frac{n!}{(n-x)!x!}p^xq^{n-x}[/tex]

Where p(x) is the probability of x successes. x is the number of successes, and q is the probability of a failure.

Step 3. In this case, x is 4:

[tex]x=4[/tex]

The probability of failure is defined as follows:

[tex]\begin{gathered} q=1-p \\ \downarrow \\ q=1-0.4 \\ \downarrow \\ q=0.6 \end{gathered}[/tex]

Step 4. Substituting the known values into the binomial distribution formula:

[tex]\begin{gathered} p(x)=\frac{n!}{(n-x)!x!}p^xq^{n-x} \\ \downarrow \\ p(4)=\frac{15!}{(15-4)!(4!)}(0.4)^4(0.6)^{15-4} \end{gathered}[/tex]

Solving the operations:

[tex]\begin{gathered} p(4)=\frac{15!}{(11)!(4!)}(0.0256)(0.6)^{11} \\ \downarrow \\ p(4)=\frac{15!}{(11)!4!}(0.0256)(0.003628) \end{gathered}[/tex]

Step 5. Solving step by step and simplifying the factorial expressions, the result is:

[tex]\begin{gathered} p(4)=\frac{15!}{(11)!4!}(0.0256)(0.003628) \\ \downarrow \\ p(4)=\frac{15\times14\times13\times12\times11!}{(11)!4!}(0.0256)(0.003628) \\ \downarrow \\ p(4)=\frac{15\times14\times13\times12}{4!}(0.0256)(0.003628) \\ \downarrow \\ p(4)=\frac{15\times14\times13\times12}{4\times3\times2\times1}(0.0256)(0.003628) \\ \downarrow \\ p(4)=\frac{32760}{24}(0.0256)(0.003628) \\ \downarrow \\ p(4)=(1365)(0.0256)(0.003628) \\ \downarrow \\ p(4)=0.126776 \end{gathered}[/tex]

The probability is 0.126776

Answer:

[tex]P\left(4successes\right)=0.126776[/tex]

Otras preguntas