You have two copper disks of same mass; disk 1 has twice the radius of disk 2. What is the ratio of the moment of inertia I 1 /I 2 ? (moment of inertia of a disk I= 1 /2 MR^ 2 )

Respuesta :

ANSWER

[tex]\frac{I_{1}}{I_{2}}=4[/tex]

EXPLANATION

Let the mass of disks 1 and 2 be m.

Let the radius of disk 2 be R.

This implies that the radius of disk 1 is 2R.

The moment of inertia of disk 1 is given by:

[tex]\begin{gathered} I_1=\frac{1}{2}m(2R)^2 \\ I_1=\frac{1}{2}m*4R^2 \\ I_1=2mR^2 \end{gathered}[/tex]

The moment of inertia of disk 2 is given by:

[tex]I_2=\frac{1}{2}mR^2[/tex]

Therefore, the ratio of the moment of inertia of disk 1 to disk 2 is:

[tex]\begin{gathered} \frac{I_1}{I_2}=\frac{2mR^2}{\frac{1}{2}mR^2} \\ \frac{I_1}{I_2}=\frac{2}{\frac{1}{2}}=2*2 \\ \frac{I_1}{I_2}=4 \end{gathered}[/tex]

That is the answer.