Write the equation of the parabola that has its x-intercepts at (1+[tex]\sqrt{5}[/tex], 0) and (1-[tex]\sqrt{5}[/tex],0) and passes through the point (4,8)

please put it in the form y = ...

thank you

Respuesta :

Answer:

[tex]y=2x^2-4x-8[/tex]

Step-by-step explanation:

Factored form of a parabola

[tex]y=a(x-p)(x-q)[/tex]

where:

  • p and q are the x-intercepts.
  • a is some constant.

Given x-intercepts:

  • (1+√5, 0)
  • (1-√5, 0)

Therefore:

[tex]\implies y=a(x-(1+\sqrt{5}))(x-(1-\sqrt{5}))[/tex]

[tex]\implies y=a(x-1-\sqrt{5})(x-1+\sqrt{5})[/tex]

To find a, substitute the given point (4, 8) into the equation and solve for a:

[tex]\implies a(4-1-\sqrt{5})(4-1+\sqrt{5})=8[/tex]

[tex]\implies a(3-\sqrt{5})(3+\sqrt{5})=8[/tex]

[tex]\implies4a=8[/tex]

[tex]\implies a=2[/tex]

Therefore, the equation of the parabola in factored form is:

[tex]\implies y=2(x-1-\sqrt{5})(x-1+\sqrt{5})[/tex]

Expand so that the equation is in standard form:

[tex]\implies y=2(x^2-x+\sqrt{5}x-x+1-\sqrt{5}-\sqrt{5}x+\sqrt{5}-5)[/tex]

[tex]\implies y=2(x^2-x-x+\sqrt{5}x-\sqrt{5}x+\sqrt{5}-\sqrt{5}+1-5)[/tex]

[tex]\implies y=2(x^2-2x-4)[/tex]

[tex]\implies y=2x^2-4x-8[/tex]