Solution:
Given;
[tex]P(B|A)=0.76,P(A)=0.46[/tex]Thus, the probability of B and A can be calculated using the formula;
[tex]\begin{gathered} P(B\text{ and }A)=P(B|A)\times P(A) \\ \\ P(B\text{ and }A)=0.76\times0.46 \\ \\ P(B\text{ and }A)=0.3496 \\ \\ P(B\text{ and }A)\approx0.350 \end{gathered}[/tex]ANSWER:
[tex]P(B\text{and}A)=0.350[/tex]