Respuesta :

We know all the sides of the triangle. We need to find the missing angles.

To do this, we can use a formula known as the cosine rule:

[tex]c=\sqrt[]{a^2+b^2-2ab\cos\gamma}[/tex]

Each one of the elements involved in this formula is explained in the next diagram:

Therefore, we can solve the equation above for gamma:

[tex]\begin{gathered} c=\sqrt[]{a^2+b^2-2ab\cos\gamma} \\ \Rightarrow c^2-a^2-b^2=-2ab\cos \gamma \\ \Rightarrow a^2+b^2-c^2=2ab\cos \gamma \\ \Rightarrow\cos \gamma=\frac{a^2+b^2-c^2}{2ab} \end{gathered}[/tex]

Let's set a=8,b=11,c=17, then:

[tex]\cos \gamma=-\frac{104}{176}=-\frac{13}{22}[/tex]

We can then use the arccos function to get the value of gamma:

[tex]\begin{gathered} \cos \gamma=-\frac{13}{22} \\ \Rightarrow\gamma=\arccos (-\frac{13}{22})\approx126.2degree \end{gathered}[/tex]

The only option that has such an angle is the fourth one. Therefore, the answer is the fourth option: 126°, 32°, 22°

Ver imagen CarissaO360020

Otras preguntas