find the exact values of the three trigonomic functions of the angle 0 (sin 0, cos 0 and tan 0) in the figure.Use the Pythagorean theorem to find the third side of the triangle

find the exact values of the three trigonomic functions of the angle 0 sin 0 cos 0 and tan 0 in the figureUse the Pythagorean theorem to find the third side of class=

Respuesta :

In the given triangle we have, a = 7, b = 24

In right angle triangle we have, Perpendicular = 7 , base=24

Apply Pythagoras to find the Hypotenuse of the triangle:

Puthagoras Theorem:

In the right angle triangle, The sum of square of perpendicular and base is equal to the square of the hypotenuse.

Hypotenuse²= Base² + Perpendicular²

In the given figure we hvae to evaluate the hypotenuse

[tex]\begin{gathered} \text{Hypotenuse}^2=perpendicular^2+base^2 \\ \text{Hypotenuse}^2=7^2+24^2 \\ \text{Hypotenuse}^2=49+576 \\ \text{Hypotenuse}^2=625 \\ \text{Hypotenuse}=\text{ 25} \end{gathered}[/tex]

Hypotenuse =25

All sides are : 25, 7, 24

The ratio of Perpendicular to the base is the tangent.

[tex]\begin{gathered} \text{Tan}\theta=\frac{Perpendicular}{Base} \\ \text{Tan}\theta=\frac{a}{b} \\ \text{Tan}\theta=\frac{7}{24} \\ \text{Tan}\theta=0.291 \\ \theta=\tan ^{-1}(0.291) \\ \theta=16.2^o \end{gathered}[/tex]

So, we get

[tex]\begin{gathered} \text{For, Sin}\theta=\frac{Perpendicular}{Hypotenuse} \\ \text{ Sin}\theta=\frac{7}{25} \\ \\ \text{for Cos}\theta=\frac{Base}{Hypotenuse} \\ \text{Cos}\theta=\frac{24}{25} \end{gathered}[/tex]

thus, the trignometric ratio of angle is :

[tex]\text{ Sin}\theta=\frac{7}{25},\text{ Cos}\theta=\frac{24}{25},\text{ Tan}\theta=\frac{7}{24}[/tex]

ANswer:

A)

[tex]\text{ Sin}\theta=\frac{7}{25},\text{ Cos}\theta=\frac{24}{25},\text{ Tan}\theta=\frac{7}{24}[/tex]