Since the given formula is
[tex]V=RI[/tex]
Since we need to find R, then divide both sides by I
[tex]\begin{gathered} \frac{V}{I}=\frac{RI}{I} \\ \\ \frac{V}{I}=R \\ \\ R=\frac{V}{I} \end{gathered}[/tex]
Since V = (90 + 20i)
Since I = (-5 + 3i), then
[tex]R=\frac{(90+20i)}{(-5+3i)}[/tex]
Multiply up and down by the conjugate of (-5 + 3i) which is (-5 - 3i)
[tex]R=\frac{(90+20i)}{(-5+3i)}\times\frac{(-5-3i)}{(-5-3i)}[/tex]
Simplify up and down
[tex]R=\frac{(90)(-5)+(90)(-3i)+(20i)(-5)+(20i)(-3i)}{(-5)(-5)-(3i)(3i)}[/tex][tex]R=\frac{-450-270i-100i-60i^2}{25-9i^2}[/tex]
Replace i^2 by -1 and add the like terms
[tex]\begin{gathered} R=\frac{-450-370i-60(-1)}{25-9(-1)} \\ \\ R=\frac{-450-370i+60}{25+9} \\ \\ R=\frac{-390-370i}{34} \end{gathered}[/tex]
The answer is
[tex]R=\frac{[-390]+[-370]i}{34}[/tex][tex]R=\frac{[-195]+[-185]i}{17}[/tex]