Solution
Question 1:
[tex]\begin{gathered} \text{ On day 1, 3 rabbits hopped out} \\ \text{ On day 2, }3\times2=6\text{ rabbits hopped out} \\ \text{ On day 3, }3\times2\times2=3\times2^2\text{ rabbits hopped out} \\ \text{ On day 4, }3\times2\times2\times2=3\times2^3\text{ rabbits hopped out} \\ \\ \text{Following this pattern, we can find the number of rabbits that will hop out on a day n.} \\ \\ \text{ On day }n,3\times2\times2\times2\ldots\times2=3\times2^{n-1}\text{ rabbits hopped out} \\ \\ \text{Thus, the exponential function to model this scenario is given below as } \\ \\ f(n)=3\times2^{n-1} \end{gathered}[/tex]Question 2:
[tex]\begin{gathered} \text{The question is asking for the number of rabbits that will hop out on day 13} \\ \text{ We can simply apply our formula and this implies that }n=13 \\ \\ \therefore f(13)=3\times2^{13-1} \\ \\ f(13)=3\times2^{12}=12,288 \\ \\ \text{Thus, the number of rabbits that will hop out of the hat on the 13th Day is 12,288} \end{gathered}[/tex]Final Answer
Question 1:
The exponential function to model the scenario is
[tex]f(n)=3\times2^{n-1}[/tex]
Question 2:
The number of rabbits that will hop out of the hat on the 13th Day is 12,288 rabbits